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ABSTRACT
A Face Recognition System is used to automatically 
identify or verify a person from digital image. Since 
capturing of face image is not very difficult process 
and does not require too much cooperation of the 
subject, it keeps the interest of researchers alive. In 
this paper, combination of linear and combination of 
nonlinear dimensionality reduction techniques are 
implemented separately for face recognition system. 
The linear methods used are PCA, LDA and LPP and 
nonlinear methods used are LLE and ISOMAP. 
Recognition Rate is analyzed for comparing both 
systems. The results obtained on ORL database show 
that system with combination of nonlinear techniques 
performs better than linear counterpart.
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1. INTRODUCTION

Face Recognition System is the one of the biometric 
system which is used for security purposes all over the 
world. It is used to identify or verify a person from a 
digital image. Biometric systems are preferred from 
security point of view since they are dependent on what a 
person has rather than what he can remember. Since 
capturing an image is the easy process and does not 
require too much cooperation of the subject, it is topic of 
wide interest of researchers from almost a decade.

     With fast increase in quantity and complexity of data, 
it becomes difficult rather impossible to directly deal with 
raw data. Also, irrelevant features reduce efficiency of the 
system. Hence, dimensionality reduction is important 
prior to identification. It basically extracts intrinsic 
structure of the data and discards the redundant data. 
Appearance based methods treat images as two 
dimensional intensity matrices and use statistical 

properties to analyse an image. E.g. the image of size 
m n pixels becomes matrix of mn size. As number if

images in training set increases, size of matrix increases,. 
This curse of dimensionality is reduced by dimensionality 
reduction techniques. Appearance based methods can be 
classified as linear methods and nonlinear methods. 
Linear methods explicitly transform data from high 
dimensional subspace into low dimensional subspace by 
linear mapping. However, the general problems faced in 
real time face recognition system are pose variations, 
illumination variations, differing environmental 
conditions, aging effects etc. All these variations tend to 
make face database nonlinear in nature. Linear methods 
fail to reveal the intrinsic structure of nonlinear data and 
also corresponding reconstruction error tends to rise. In 
nonlinear techniques, explicit projections are not done. 
Instead faithful low dimensional data matrix is obtained 
directly from high dimensional data matrix. Nonlinear 
methods have ability to deal with complex nonlinear data 
and so features retained help to increase the efficiency of 
the system.

     In this paper, combination of linear methods i.e. 
Principal Component Analysis (PCA), Linear 
Discriminant Analysis (LDA) and Locality Preserving 
Projections (LPP) is used to implement linear system [1]. 
Combination of nonlinear methods i.e. Isometric 
Mapping (ISOMAP) and Locally Linear Embedding 
(LLE) is used to implement nonlinear system. 
Comparison between linear and nonlinear system is done 
based on recognition rate.

2. LINEAR DIMENSIONALITY REDUCTION
TECHNIQUES

Linear Dimensionality Reduction Techniques used in this 
paper are explained in depth in following sections.



S.K.Sandhu, Sumit Budhiraja / International Journal of Engineering Research and Applications 
(IJERA)                 ISSN: 2248-9622                          www.ijera.com                                                                                         

Vol. 1, Issue 2, pp.264-271

265 | P a g e

3.1. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical 
dimensionality-reduction method, which produces the 
linear least-squares subspace of a training set [2]. Given a
y-dimensional vector representation of each face in a 
training set of M images, the PCA finds a z- dimensional 
subspace whose basis vectors correspond to the maximum 
variance directions in the original image space. New z-
dimensional subspace is normally lower dimensional 
space than the original space (z<<y). Given a total of M
images with (Nx x Ny) pixels, we convert them into 
training set Γ = [Γ1 Γ2 … ΓM] with lexicographic 
ordering the pixel elements. Difference matrix is the 
training data with their mean removed [3]. Covariance 
matrix is computed step-by-step from the difference 
matrix as given by following equations:-

                                                          (1)

                                                              (2)

                                                (3)

                                        (4)

where Ψ is mean of whole data in vector form, is a 

mean subtracted image, and A is difference matrix. C is 
covariance matrix lying in a very high dimension which is 
(Nx x Ny)* (Nx x Ny). Solution to this problem is provided 
for, by using a covariance matrix L with small dimension 
which is (M x M). Eigenvectors, v computed from 
covariance L is multiplied with A to yield another 
variable υ which is able to represent the actual 
eigenvectors of covariance C.

L= A =                                                                                 (5)  

                                                                         (6)

Weight sets corresponding to respective subjects in 
training set are obtained using projection basis defined by 
following equations:-

                                             (7)

                                                   (8)

where wk is weight and Ω is weight set. Not all 
eigenvectors are needed, thus selecting M eigenvectors 
obtain projection basis. For single test image 
identification, mean subtraction is done and projected on 
υk to obtain its weight. 

3.2 Linear Discriminant Analysis (LDA)

The Linear Discriminant Analysis (LDA) is also one of 
the most popular linear projection techniques. It finds the 
set of the most Discriminant projection vectors which 
map high-dimensional samples onto a low-dimensional 
space. Belhumeur et al. [4] firstly presented projection 
method based on the Fisher’s Linear Discriminant (FLD) 
in 1997. For all samples of all classes, the between-class 
scatter matrix SB and the within-class scatter matrix SW

are defined. The goal is to maximize SB while minimizing 
SW, in other words, maximize the ratio det| SB | / det| SW |. 
This ratio is maximized when the column vectors of the 
projection matrix are the eigenvectors of (SW

-1· SB).

     Within – class and between-class scatter matrices are 
computed as follows:

                     (9)

]                           (10)

Here SW is the within-class scatter matrix, SB is the 
between class scatter matrix, Xi

k is image i of class k 
(k=1, 2, … M). xk is the mean vector of class k, x is 
overall mean vector, Nk  is the sample size of class k. 

Various measures are available for quantifying the 
discriminatory power, Fisher criterion is the common 
one:                        

                                                             (11)

Here  is the optimal projection matrix, which is

obtained via solving the generalised eigenvalues 
problems:

                                                           (12)

Mapping the training sample xi into LDA subspace is as 
follows:
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                                                                                                       (13)

Here low dimension vector yi is the LDA feature of the 
sample xi. LDA has powerful discriminatory power. LDA 
produces well separated classes in low dimensional 
subspace even under severe variation in lighting and 
facial expression. However, It takes each image as point 
in high dimensional space where even little amount of 
geometric transform degrades recognition performance 
severely. LDA also suffers from small sample size 
problem which exists in high dimensional pattern 
recognition task where number of available sample is 
smaller than dimensionality of the samples.

3.3 Locality Preserving Projections (LPP)

Locality Preserving Projections are linear projective maps 
that arise by solving a variational problem that optimally 
preserves the neighborhood structure of the data set. LPP 
can be seen as an alternative to Principal Component 
Analysis (PCA). When the high dimensional data lies on 
a low dimensional manifold embedded in the ambient 
space, the Locality Preserving Projections are obtained by 
finding the optimal linear approximations to the 
eigenfunctions of the Laplace Beltrami operator on the 
manifold. As a result, LPP shares many of the data 
representation properties of nonlinear techniques such as 
Laplacian Eigenmaps or Locally Linear Embedding. Yet 
LPP is linear and more crucially is defined everywhere in 
ambient space rather than just on the training data points 
[5].

The algorithm contains the following steps:

1. Constructing the adjacency graph: Let G denote a 
graph with m nodes. An edge is put between nodes i and j 
if xi and xj are “close”. There are two variations:

(a) ε-neighborhoods [Parameter ε � R]: Nodes i and j are 
connected by an edge if ||xi – xj ||2 < ε where the norm is 
the usual Euclidean norm in Rn.

(b) k nearest neighbors [Parameter k � N]: Nodes i and j 
are connected by an edge if i is among k nearest 
neighbors of j or j is among k nearest neighbors of i.

2. Choosing the weights: Here, as well, there are two 
variations for weighting the edges. W is a sparse 
symmetric m × m matrix with Wij having the weight of 

the edge joining vertices i and j, and 0 if there is no such 
edge.

(a) Heat kernel [Parameter t � R]: If nodes i and j are 
connected, put 

                                                              (14)

(b) Simple-minded [No parameter]: Wij = 1 if and only if 
vertices i and j are connected by an edge.

3. Eigen maps: Compute the eigenvectors and 
eigenvalues for the generalized eigenvector problem:

                                                (15)

where D is a diagonal matrix whose entries are column 
(or row, since W is symmetric) sums of W, 

is the Laplacian matrix. The ith 

column of matrix X is xi. Let the column vectors a0;__ _ 
_;al-1 be the solutions of equation (15), ordered according 
to their eigenvalues, λ0 < _ _ _ < λ l-1. Thus, the 
embedding is as follows:

,  .......                  (16)

where yi is a l-dimensional vector, and A is a n × l matrix. 
yi represents Laplacian faces. LPP is good method to 
preserve local unique features from an image.

3. NONLINEAR DIMENSIONALITY 
REDUCTION TECHNIQUES

Nonlinear Dimensionality Reduction Techniques used in 
this paper are explained in subsequent sections:

3.1 Isometric Mapping (ISOMAP)

Classical linear scaling has proven to be successful in 
many applications, but it suffers from the fact that it 
mainly aims to retain pair wise Euclidean distances, and 
does not take into account the distribution of the 
neighboring data points. If the high-dimensional data lies 
on or near a curved manifold, classical scaling might 
consider two data points as near points, whereas their 
distance over the manifold is much larger than the typical 
inter-point distance. ISOMAP is a technique that resolves 
this problem by attempting to preserve pair wise geodesic 
(or curvilinear) distances between data points [6]. 
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Geodesic distance is the distance between two points 
measured over the manifold. The great-circle 
distance or geodesic distance is the shortest 
distance between any two points on the surface of 
a sphere measured along a path on the surface of the 
sphere. For data lying on a nonlinear manifold, the “true 
distance” between two data points is the geodesic 
distance on the manifold, i.e., the distance along the 
surface of the manifold, rather than the straight-line 
Euclidean distance [7]. The main purpose of ISOMAP is 
to find the intrinsic geometry of the data, as captured in 
the geodesic manifold distances between all pairs of data 
points. The approximation of geodesic distance is divided 
into two cases. In case of neighboring points, Euclidean 
distance in the input space provides a good approximation 
to geodesic distance. In case of faraway points, geodesic 
distance can be approximated by adding up a sequence of 
“short hops” between neighboring points. ISOMAP 
shares some advantages with PCA, LDA, and MDS, such 
as computational efficiency and asymptotic convergence 
guarantees, but with more flexibility to learn a broad class 
of nonlinear manifolds. The ISOMAP algorithm takes as 
input the distances d (xi, xj) between all pairs xi and xj

from N data points in the high-dimensional input space 
Rq. The algorithm outputs coordinate vectors yi in a d-
dimensional Euclidean space Rd that best represent the 
intrinsic geometry of the data. 

The detailed steps of ISOMAP are listed as follows [8]:

1. Construct neighborhood graph: Define the graph G 
over all data points by connecting points xi and xj and if 
they are closer than a certain distance ε, or if xi is one of 
the -nearest neighbors of xj . Set edge lengths equal to d 
(xi, xj).

2. Compute shortest paths: Initialize dG(xi,xj )= d(xi,xj ) if 
xi and xj are linked by an edge; dG(xi,xj ) = + otherwise. 

Then, for each value of k=1,2,....N, in turn, replace all 
entries dG(xi,xj ) by min{dG (xi,xj), dG (xi,xk) + dG (xj,xk)}. 
The matrix of final values DG = { dG (xi,xj),}will contain 
the shortest path distances between all pairs of points in
(this procedure is known as Floyd’s algorithm). We can 
also use Dijkstra’s shortest path algorithm.

3. Construct d-dimensional embedding: Let λp be the pth 
Eigen value (in decreasing order) of the matrix τ (DG) 
(The operator τ is defined by τ(D) = -HSH / 2, where S is 

the matrix of squared distances {Sij =Dij
2} , and H is the 

“centring matrix” {Hij = σij – 1/N}, σij is the Kronecker 
delta function , and vp

i be the ith component of the pth 
eigenvector. Then set the pth component of the d-

dimensional coordinate vector yi equal to vp
i.

3.2 Locally Linear Embedding (LLE)

Locally Linear Embedding (LLE), first proposed by Saul 
and Roweis in 2000 [9], is also a nonlinear manifold 
learning method. It is a technique that is similar to 
ISOMAP in that it also constructs a graph representation 
of the data points. However, in contrast to ISOMAP, it 
attempts to preserve solely local properties of the data. As 
a result, LLE is less sensitive to short-circuiting than 
ISOMAP, because only a small number of local 
properties are affected if short-circuiting occurs. 
Furthermore, the preservation of local properties allows 
for successful embedding of non-convex manifolds. In 
LLE, the local properties of the data manifold are 
constructed by writing the high-dimensional data points 
as a linear combination of their nearest neighbors. In the 
low-dimensional representation of the data, LLE attempts 
to retain the reconstruction weights in the linear 
combinations as good as possible.

     LLE describes the local properties of the manifold 
around a data point xi by writing the data point as a linear 
combination wi (the so-called reconstruction weights) of 
its k nearest neighbors xij. Hence, LLE fits a hyper-plane 
through the data point xi and its nearest neighbors, 
thereby assuming that the manifold is locally linear. The 
local linearity assumption implies that the reconstruction 
weights wi of the data points xi are invariant to 
translation, rotation, and rescaling. Because of the 
invariance to these transformations, any linear mapping 
of the hyper-plane to a space of lower dimensionality 
preserves the reconstruction weights in the space of lower 
dimensionality. In other words, if the low-dimensional 
data representation preserves the local geometry of the 
manifold, the reconstruction weights wi that reconstruct 
data point xi from its neighbors in the high-dimensional 
data representation also reconstruct data point yi from its 
neighbors in the low-dimensional data representation. 

Suppose that the sample data set is X= [x1,x2 ,...... ,xi

,....xn ], where xi ∈Rd ×l , and X ∈R d×N .
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The output value Y can be obtained through LLE, where 
Y= [y, y2 ...yi....yn ] where y ∈Rl , Y∈R l×N and l << d , 
and l is the embedding dimension of LLE. The detailed 
steps of LLE algorithm are as follows [10]:

1. Search for k nearest neighbors of each data point in 
high dimensional space. Distance formula can be 
expressed as 

                                           (17)

For Euclidean distance, q=2, k is total number of the 
neighbor points.

2. Calculate the local reconstruction weight matrix of the 
sample point. Reconstruction errors are measured by the 
function 

                         (18)

Where wij must satisfy the equation , wi=[wi1, 

wi2 ...wij] and wi ∈ R N ×l . If xij does not belong to the 
neighbors of xi, wij = 0. Thus weight matrix can be 
obtained, represented by W= [w1, w2... wn] , where W ∈ R 
N×N . Compute the covariance matrix of the neighbor 
points of xi, we have

                                         (19)

Therefore, we can get wij by solving linear equation

                                                  (20)

3. Map all sample points to the low-dimensional space. 
The process should meet

                            (21)

Where (Y) is the loss function. Considering the 

constraint condition

;                                                               (22)

                                                          (23)

y = arg min (Y) can be solved, where I is an l ×l unit 

matrix.

4. IMPLEMENTATION OF LINEAR AND
NONLINEAR SYSTEMS

In Facial Recognition system, three folders are made. One 
has training data and other has test data. Training data 
includes number of images of persons in different 
conditions. Test data contains query image that has to be 
authenticated from the available database. Test data 
includes images of same persons as in training data but 
with different poses or expressions. Third folder has 
images of persons treated as impostors. This folder 
contains images of persons not included in training data 
set. As discussed above, Dimension reduction is 
important step in face recognition system to reduce 
redundancy of data. In this paper, combination of linear 
techniques and combination of nonlinear techniques are 
used to implement linear and nonlinear system 
respectively. The Flow Diagram followed for 
implementation of combination of linear methods and 
combination of nonlinear methods is shown Fig.1 and 
Fig.2 respectively.

     PCA is a global approach that uses Eigen vectors and 
Eigen values for representing face images. Those Eigen 
values are considered as set of features which together 
characterize the variation between face images, so it 
preserves holistic features from face image. LDA has 
high discriminatory power. It produces well separated 
classes in low dimensional subspace. So it is good to 
extract discriminatory features between classes. LPP is a 
linear projective map that arises by solving variational 
problem that optimally preserves the neighborhood 
structure of the data set. It extracts unique features from 
dataset. It also preserves locality so it is good for quick 
retrieval in high dimensional space.

Result

Images for Training 
Purpose as input

Dimension 
Reduction 
using PCA

Dimension 
Reduction 
using LDA

Dimension 
Reduction 
using LPP

Combination of PCA, 
LDA and LPP

Distance Calculation 
between trained images 

and test images

Test 
Image
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Figure1. Flow Diagram for combination of Linear 
Dimensionality Reduction Techniques 

     

Figure2. Flow Diagram for combination of Nonlinear 
Dimensionality Reduction Techniques 

     Isomap is full spectral method that attempts to 
preserve pair wise geodesic distance instead of Euclidean 
distance between data points. So it extracts good global 
features. LLE is a sparse spectral technique that is similar 
to ISOMAP in the sense that it also constructs graph 
representation of data points. But in contrast to Isomap, it 
attempts to solely preserve local properties of data by 
writing high dimensional data points as linear 
combination of nearest neighbors. So it preserves local 
features well.

     Projections obtained from PCA, LDA and LPP are 
combined and projected on one subspace for linear 
system. Projections obtained from ISOMAP and LLE are 
combined and projected on subspace for nonlinear 
system. Euclidean distance classifier is used to calculate 
distance between characteristics of test image (or query 
image) and training data set. The training set feature 
vector with least distance gives the best match image with 
the test image .If the minimum distance obtained is less 

than predefined threshold, person is authenticated 
otherwise person is treated as impostor.

5. RESULTS

In this paper, Recognition rate of linear and nonlinear 
system is calculated for comparison of performance of 
both systems. Recognition rate signifies accuracy of the 
face recognition system. It basically tells how efficiently 
our system distinguishes between persons in training 
system and impostors, i.e. how accurately it accepts 
persons with true identity and rejects other. Confusion 
matrix is deduced for each system as shown in Fig.3. 
True Positive (TP) indicates correct acceptance of 
authenticated person. True Negative (TN) indicates 
correct rejection of impostor or unauthenticated person. 
False Positive (FP) indicates rejection of authenticated 
person and false negative (FN) indicates acceptance of 
unauthenticated person or impostor. P indicates total 
number of authenticated persons and N indicates total 
number of unauthenticated persons.

                                                      (24)

                                                        (25)

                                        (26)

The experiments are conducted on ORL face database 
[11]. Fig.4 shows the data set of all people in ORL 
database with different facial expressions. The ORL 
database image size is 92×112 which is small. For 
training of data, 7 images per person are used and 
randomly 2 images are used for testing purposes. 
MATLAB commands were used for programs with 
Intel(R) Core(TM) Duo CPU 2.20 GHz and 3GB RAM.
Five different cases are considered for analysing 
behaviour of system with different number of images 
Table1 shows recognition rate obtained for system 
implemented using combination of linear dimensionality 
reduction techniques under different cases. Table 2 shows 
recognition rate obtained for system implemented using 
combination of nonlinear dimensionality reduction 
techniques under different cases. 

     From Table 1 and Table 2, it can be interpreted that for 
both systems, True Positive Rate and False Positive Rate 
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Purpose as input

Dimension Reduction 
using ISOMAP

Dimension Reduction 
using LLE

Combination of 
ISOMAP and LLE

Distance Calculation 
between trained images 

and test images
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Result
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increases with increase in number of training images. But 
there is overall increase in performance of both linear and 
nonlinear systems with respect to Recognition Rate.

Figure3 Confusion Matrix

Figure4 ORL Database.

Table 1 Recognition rate of ORL data using combination 
of linear dimensionality reduction techniques

Table 2 Recognition rate of ORL data using combination 
of nonlinear dimensionality reduction techniques

No. of 
training 
Images

No. of 
test 

images

No. of 
Impostors 

images

TPR FPR Total 
Recognition 

Rate
70 20 24 90% 4.16% 93.18%

105 30 32 93.3% 6.25% 93.54%
140 40 48 95% 6.8% 94.31%
170 50 64 96% 4.6% 95.61%
210 60 80 96.6% 5% 95.71%

     Fig.5 shows graphical representation of comparison of 
results for both linear and nonlinear systems. It can be 
clearly seen from Fig.5 that performance of nonlinear 
systems is better than combination of linear system. 
Although Recognition Rate increases with increase in 
Number of images in training set, this increase is more for 
Combination of Nonlinear system implemented as 
compared with linear counterpart.

Figure5 Comparison of performance of linear and 
nonlinear systems with varying number of training image 
based on Recognition rate using ORL data

6. CONCLUSION

In this paper, Face Recognition system using combination 
of linear dimensionality reduction techniques and 
combination of nonlinear dimensionality reduction 

No. of 
training 
Images

No. of 
test 

images

No. of 
Impostors 

images

TPR FPR Total 
Recognition 

Rate

70 20 24 95% 14.28% 90.9%
105 30 32 93.3% 9.3% 91.93%
140 40 48 92.5% 8.3% 92.04%
170 50 64 92% 7.8% 92.11%
210 60 80 93.3% 7.5% 92.8%

True positive

(TP)

True negative

(TN)

False negative

(FN)

False positive

(FP)
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techniques is implemented for linear and nonlinear 
system respectively. Linear techniques used are PCA, 
LDA and LPP. Nonlinear techniques used are ISOMAP 
and LLE. Recognition rate of both systems is analysed 
with varying the number of images in training set. 
Comparison of recognition rates with varying number of 
images in training set for both systems individually and 
with each other is done. It is seen that recognition rate 
improves with increase in number of images in training 
set. Also, overall recognition rate is better for nonlinear 
system as compared with linear counterpart. 
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